pir_pipeline.utils.MockData.MockData¶
- class pir_pipeline.utils.MockData.MockData(year: int | list[int] = 2008, valid: bool = True)¶
Bases:
object
Class for mocking PIR data.
- __init__(year: int | list[int] = 2008, valid: bool = True)¶
Initialize attributes
Methods
__init__
([year, valid])Initialize attributes
Set up data specifications
export
([directory, how])Export mock data
Store the mock data in an openpyxl Workbook object.
generate_rows
(columns, type)Generate mock data
Attributes
Data generated by export
List of mocked sheet names
Dictionary of mocked workbooks
Year for which to mock data
- property data¶
Data generated by export
- data_specifications() Self ¶
Set up data specifications
- export(directory: str = None, how: str = None) Self ¶
Export mock data
Mock data can be exported to a physical location by specifying the ‘directory’ argument. Otherwise specify ‘how’. One of ‘directory’ or ‘how’ must be specified but not both.
- Args:
dir (str, optional): String path to a physical directory. Defaults to None. how (str, optional): String indicating how to export the data. Defaults to None. Can be one of: “ExcelFile”, “DataFrame”, “Insertable”. These options export the data as a pandas ExcelFile, dictionary of pandas DataFrames, or insertion-ready PIRIngestor object respectively.
- Returns:
Self: Returns an object of class MockData.
- generate_data() Self ¶
Store the mock data in an openpyxl Workbook object.
- Returns:
Self: Returns an object of class MockData.
- generate_rows(columns: list[str], type: str) Self ¶
Generate mock data
- Parameters:
columns (list[str]): Columns to include in the mocked data type (str): The sheet type, one of self._specs[‘sheet’]
- Returns:
Self: Returns an object of class MockData.
- property sheets¶
List of mocked sheet names
- property workbooks¶
Dictionary of mocked workbooks
- property year¶
Year for which to mock data